Refine Your Search

Topic

Search Results

Technical Paper

Development of Nu 2.0L CVVL Engine

2014-04-01
2014-01-1635
Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
Technical Paper

Combined Condensing Air-Conditioning System

2014-04-01
2014-01-0712
In order to improve the fuel consumption ratio of the vehicle, a great deal of research is being carried out to improve air-conditioning efficiency. Increasing the efficiency of the condenser is directly connected to the power consumption of the compressor. This paper describes an experimental method of using an additional water-cooled condenser to reduce power consumption and decrease discharge pressure of the air-conditioning system. First, the principle of a combined cooling (water + air) method was evaluated theoretically. Next, experimental proof was conducted with the additional water-cooled condenser. The shape and structure is similar to the plate type of the transmission oil cooler used in a radiator. Through a number of tests, it was found that it is possible is to reduce power consumption of compressor by decreasing discharge pressure.
Technical Paper

A Method to Analyze “The Imaginary Kingpin Axis” in Multi-Link Type Suspension Systems

1993-03-01
930262
The purpose of this paper is to introduce a method to analyze the imaginary kingpin axis in multi-link type suspension mechanisms by using the Displacement Matrix method, the instantaneous screw axis theory, and the nonlinear equation solver “DESIGN”.[1][2] The mathematical logic and a Kinematic theory used in this method have been developed a long time ago. But the key point of this method is how accurate and effective we can get the information on design parameters related to the imaginary kingpin axis existing only in the multi-link type suspension, especially in the initial stage of suspension geometry design.
Technical Paper

An Improved Methodology for Calculation of the Inertial Resistance of Automotive Latching Systems

2014-04-01
2014-01-0544
This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
X